Carbon nanotube-based sensor developed as a rapid diagnostic for Covid-19 or other emerging pathogens

Significance 

Carbon nanotubes are tubes made of carbon with diameters typically measured in nanometers. They are often refer to single-wall carbon nanotubes  and are one of the allotropes of carbon, intermediate between fullerene cages and flat graphene. They are promising new materials with high potential for fabrication of the next generation of energy storage, supercapacitors, field emission transistors, high-performance catalysis, photovoltaics, and biomedical devices, implants, and sensors

Using specialized carbon nanotubes, MIT scientists have designed a novel sensor that can detect SARS-CoV-2 without any antibodies, giving a rapid result within minutes. Their new sensor is based on technology that can quickly generate rapid and accurate diagnostics, not just for Covid-19 but for future pandemics. The research was led by Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study. MIT postdoc Sooyeon Cho and graduate student Xiaojia Jin are the lead authors of the paper, which was published in Journal Analytical Chemistry. Other authors include MIT graduate students Sungyun Yang and Jianqiao Cui, and postdoc Xun Gong. The diagnostic is based on carbon nanotube sensor technology that Strano’s lab has previously developed. Once the researchers began working on a Covid-19 sensor, it took them just 10 days to identify a modified carbon nanotube capable of selectively detecting the viral proteins they were looking for, and then test it and incorporate it into a working prototype. This approach also eliminates the need for antibodies or other reagents that are time-consuming to generate, purify, and make widely available.

The research team previously developed a novel approach to design sensors for a variety of molecules. Their technique relies on carbon nanotubes a hollow, nanometer-thick cylinders made of carbon that naturally fluoresce when exposed to laser light. They have shown that by wrapping such tubes in different polymers, they can create sensors that respond to specific target molecules by chemically recognizing them.

Their approach, known as Corona Phase Molecular Recognition (CoPhMoRe), takes advantage of a phenomenon that occurs when certain types of polymers bind to a nanoparticle. Known as amphiphilic polymers, these molecules have hydrophobic regions that latch onto the tubes like anchors and hydrophilic regions that form a series of loops extending away from the tubes. Those loops form a layer called a corona surrounding the nanotube. Depending on the arrangement of the loops, different types of target molecules can wedge into the spaces between the loops, and this binding of the target alters the intensity or peak wavelength of fluorescence produced by the carbon nanotube.

The authors had already developed strategies that allow them to predict which amphiphilic polymers will interact best with a particular target molecule, so they were able to quickly generate a set of 11 strong candidates for SARS-CoV-2. They identified accurate sensors for both the nucleocapsid and the spike protein of the SARS-CoV-2 virus. During that time, they also were able to incorporate the sensors into a prototype device with a fiber optic tip that can detect fluorescence changes of the biofluid sample in real time. The device produces a result within about five minutes, and can detect concentrations as low as 2.4 picograms of viral protein per milliliter of sample. In more recent experiments done after this paper was submitted, the researchers have achieved a limit of detection lower than the rapid tests that are now commercially available.

The researchers also showed that the device could detect the SARS-CoV-2 nucleocapsid protein (but not the spike protein) when it was dissolved in saliva. Detecting viral proteins in saliva is usually difficult because saliva contains sticky carbohydrate and digestive enzyme molecules that interfere with protein detection, which is why most Covid-19 diagnostics require nasal swabs.

The sensor shows the highest range of limit of detection, response time, and saliva compatibility even without any antibody and receptor design. It is a unique feature of this type of molecular recognition scheme that rapid design and testing is possible, unhindered by the development time and supply chain requirements of a conventional antibody or enzymatic receptor.

Sensors that rely on antibodies to detect viral proteins, which form the basis of many of the rapid Covid-19 tests now available, take much longer to develop because the process of designing the right protein antibody is so time-consuming. The speed with which the researchers were able to develop a working prototype suggests that this approach could prove useful for developing diagnostics more quickly during future pandemics.

Carbon nanotube-based sensor developed as a rapid diagnostic for Covid-19 or other emerging pathogens - Medicine Innovates

About the author

Michael Steven Strano is an American chemical engineer and the Carbon P. Dubbs Professor of Chemical Engineering at Massachusetts Institute of Technology (MIT).  He is particularly interested in quantum-confined materials  Strano was appointed editor-in-chief of Carbon in 2016. In 2017, Strano was elected a member of the National Academy of Engineering “for contributions to nanotechnology, including fluorescent sensors for human health and solar and thermal energy devices.

.

Reference

Soo-Yeon Cho, Xiaojia Jin, Xun Gong, Sungyun Yang, Jianqiao Cui, and Michael S. Strano*. Antibody-Free Rapid Detection of SARS-CoV-2 Proteins Using Corona Phase Molecular Recognition to Accelerate Development Time. Anal. Chem. 2021, 93, 44, 14685–14693

Go To Anal. Chem.

About Priti