Design of antiviral agents by blocking thiol-mediated uptake

Significance 

The cell membrane is impermeable to viruses: to get inside and infect a cell, they use a range of strategies to exploit the cellular and biochemical properties of the membranes. The thiol-mediated uptake of organic molecules similar to alcohols, where oxygen is replaced by a sulfur atom, is one of the entry mechanisms, with its use by Human Immunodeficiency Virus (HIV) demonstrated a few years ago. No effective inhibitor is currently available because of the robustness of the chemical reactions and bonds at work.

A research group from the University of Geneva (UNIGE) has identified inhibitors that are up to 5,000 times more effective than the one most often used today. Preliminary tests — published and available free of charge in Chemical Science, the flagship journal of the Royal Society of Chemistry — demonstrate the blocking of the cellular entry of viruses expressing the SARS-CoV-2 proteins. The study paves the way for research into new antivirals.

Professor Stefan Matile from the UNIGE’s Department of Organic Chemistry  at National Centre of Competence in Research (NCCR) has been investigating the way thiols react with other structures containing sulfur: sulfides, molecules where sulfur is combined with another chemical element. Covalent bonds, based on sharing electrons between two atoms, freely oscillate between sulfur atoms, depending on conditions.

Sulfur compounds are present in nature, particularly on the membrane of eukaryotic cells and on the envelope of viruses, bacteria and toxins. Studies suggest that they play a role in one of the mechanisms — known as thiol-mediated uptake — that enables the very difficult passage from outside to inside the cell. This key step involves the dynamic bond between thiols and sulfides. They cause the substrate to enter the cell either by fusion or endocytosis, or by direct translocation through the plasma membrane into the cytosol. Previous studies  showed that the entry of HIV and diphtheria toxin use a mechanism involving thiols.

The involvement of membrane thiols in cellular uptake is usually tested by inhibition using Ellman’s reagent. Unfortunately, this test isn’t always reliable, partly because of the relatively low reactivity of Ellman’s reagent faced with the high reactivity of thiols and sulfides.

The research team began to looking for a potential inhibitor, thinking that it could prove useful as an antiviral against SARS-CoV-2. The authors reviewed potential inhibitors and carried out in vitro cellular uptake tests of sulfur molecules marked with fluorescent probes to assess their presence inside cells using fluorescence microscopy.

Molecules up to 5,000 times more effective than Ellman’s reagent were identified. With these excellent inhibitors in hand, the laboratory threw itself into viral tests with the help of Neurix, a Geneva-based start-up. They modified laboratory viruses, called lentivectors, expressing the proteins of the SARS-CoV-2 viral envelope pandemic safely and harmlessly. One of the inhibitors was found to be effective at blocking the virus’s entry into cells in vitro.  These results are at a very early stage and it would be entirely speculative to say we’ve discovered an antiviral drug against coronavirus. At the same time, this research shows that thiol-mediated uptake could be an interesting line of enquiry for developing future antivirals.

Inhibitors of thiol-mediated uptake - Medicine Innovates

About the author

Stefan Matile is a Full Professor in the Department of Organic Chemistry at the University of Geneva and a founding member of the National Centre of Competence in Research (NCCR) Chemical Biology and the NCCR Molecular Systems Engineering. In 2010, he became an ERC Advanced Investigator. He is the co-author of more than 290 publications, many in top journals (53 JACS, etc), and has delivered more than 260 lectures all over the world.

About half of the more than 100 junior researchers he has trained so far (PhD, postdoc) are now active in academia (China, France, Germany, India, Italy, Japan, Spain, Switzerland, USA, etc); others preferred a career in industry (Firmenich, Nestle, DuPont Geneva, Siegfried, BASF, Roche, Novartis, JT, etc), or elsewhere. Educated at the University of Zurich (PhD, with Wolf Woggon) and Columbia University in New York (postdoc, with Koji Nakanishi), he started his independent academic career as an Assistant Professor at Georgetown University, Washington DC, before moving to Geneva.

Reference

Yangyang Cheng, Anh-Tuan Pham, Takehiro Kato, Bumhee Lim, Dimitri Moreau, Javier López-Andarias, Lili Zong, Naomi Sakai, Stefan Matile. Inhibitors of thiol-mediated uptakeChemical Science, 2021; DOI: 10.1039/d0sc05447j

Go To Chemical Science